Calculus: Early Transcendentals (2nd Edition)

Published by Pearson
ISBN 10: 0321947347
ISBN 13: 978-0-32194-734-5

Chapter 3 - Derivatives - 3.10 Derivatives of Inverse Trigonometric Functions - 3.10 Execises - Page 221: 24

Answer

$$f'\left( w \right) = \frac{{\cos \left( {{{\sec }^{ - 1}}2w} \right)}}{{\left| w \right|\sqrt {4{w^2} - 1} }}$$

Work Step by Step

$$\eqalign{ & f\left( w \right) = \sin \left( {{{\sec }^{ - 1}}2w} \right) \cr & {\text{find the derivative}}{\text{, differentiate both sides with respect to }}w \cr & f'\left( w \right) = \frac{d}{{dw}}\left[ {\sin \left( {{{\sec }^{ - 1}}2w} \right)} \right] \cr & {\text{use }}\frac{d}{{dw}}\left[ {\sin u} \right] = \cos u\frac{{du}}{{dw}}.{\text{ let }}u = {\sec ^{ - 1}}2w \cr & {\text{then}} \cr & f'\left( w \right) = \cos \left( {{{\sec }^{ - 1}}2w} \right)\frac{d}{{dw}}\left[ {{{\sec }^{ - 1}}2w} \right] \cr & {\text{use }}\frac{d}{{dw}}\left[ {{{\sec }^{ - 1}}u} \right] = \frac{1}{{\left| u \right|\sqrt {{u^2} - 1} }}\frac{{du}}{{dw}}.{\text{ let }}u = 2w \cr & {\text{then}} \cr & f'\left( w \right) = \cos \left( {{{\sec }^{ - 1}}2w} \right)\frac{1}{{\left| {2w} \right|\sqrt {{{\left( {2w} \right)}^2} - 1} }}\frac{d}{{dw}}\left[ {2w} \right] \cr & f'\left( w \right) = \cos \left( {{{\sec }^{ - 1}}2w} \right)\frac{1}{{\left| {2w} \right|\sqrt {{{\left( {2w} \right)}^2} - 1} }}\left( 2 \right) \cr & {\text{simplifying}} \cr & f'\left( w \right) = \cos \left( {{{\sec }^{ - 1}}2w} \right)\frac{1}{{2\left| w \right|\sqrt {4{w^2} - 1} }}\left( 2 \right) \cr & f'\left( w \right) = \frac{{\cos \left( {{{\sec }^{ - 1}}2w} \right)}}{{\left| w \right|\sqrt {4{w^2} - 1} }} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.