Calculus: Early Transcendentals (2nd Edition)

Published by Pearson
ISBN 10: 0321947347
ISBN 13: 978-0-32194-734-5

Chapter 3 - Derivatives - 3.10 Derivatives of Inverse Trigonometric Functions - 3.10 Execises - Page 221: 15

Answer

$$f'\left( y \right) = \frac{{4y}}{{1 + {{\left( {2{y^2} - 4} \right)}^2}}}$$

Work Step by Step

$$\eqalign{ & f\left( y \right) = {\tan ^{ - 1}}\left( {2{y^2} - 4} \right) \cr & {\text{find the derivative}} \cr & f'\left( y \right) = \frac{d}{{dy}}\left[ {{{\tan }^{ - 1}}\left( {2{y^2} - 4} \right)} \right] \cr & {\text{use }}\frac{d}{{dy}}\left[ {{{\tan }^{ - 1}}u} \right] = \frac{1}{{1 + {u^2}}}\frac{{du}}{{dy}}.{\text{ let }}u = 2{y^2} - 4 \cr & f'\left( y \right) = \frac{1}{{1 + {{\left( {2{y^2} - 4} \right)}^2}}}\frac{d}{{dy}}\left[ {2{y^2} - 4} \right] \cr & f'\left( y \right) = \frac{1}{{1 + {{\left( {2{y^2} - 4} \right)}^2}}}\left( {4y} \right) \cr & {\text{simplifying}} \cr & f'\left( y \right) = \frac{{4y}}{{1 + {{\left( {2{y^2} - 4} \right)}^2}}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.