Calculus: Early Transcendentals (2nd Edition)

Published by Pearson
ISBN 10: 0321947347
ISBN 13: 978-0-32194-734-5

Chapter 3 - Derivatives - 3.10 Derivatives of Inverse Trigonometric Functions - 3.10 Execises - Page 221: 17

Answer

$$f'\left( z \right) = - \frac{1}{{2\sqrt z \left( {1 + z} \right)}}$$

Work Step by Step

$$\eqalign{ & f\left( z \right) = {\cot ^{ - 1}}\sqrt z \cr & {\text{find the derivative}} \cr & f'\left( z \right) = \frac{d}{{dz}}\left[ {{{\cot }^{ - 1}}\sqrt z } \right] \cr & {\text{use }}\frac{d}{{dz}}\left[ {{{\cot }^{ - 1}}u} \right] = - \frac{1}{{1 + {u^2}}}\frac{{du}}{{dz}}.{\text{ let }}u = \sqrt z \cr & f'\left( z \right) = - \frac{1}{{1 + {{\left( {\sqrt z } \right)}^2}}}\frac{d}{{dz}}\left[ {\sqrt z } \right] \cr & {\text{then}} \cr & f'\left( z \right) = - \frac{1}{{1 + {{\left( {\sqrt z } \right)}^2}}}\left( {\frac{1}{{2\sqrt z }}} \right) \cr & {\text{simplifying}} \cr & f'\left( z \right) = - \frac{1}{{1 + z}}\left( {\frac{1}{{2\sqrt z }}} \right) \cr & f'\left( z \right) = - \frac{1}{{2\sqrt z \left( {1 + z} \right)}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.