Calculus: Early Transcendentals (2nd Edition)

Published by Pearson
ISBN 10: 0321947347
ISBN 13: 978-0-32194-734-5

Chapter 3 - Derivatives - 3.10 Derivatives of Inverse Trigonometric Functions - 3.10 Execises - Page 221: 14

Answer

$$f'\left( x \right) = - \frac{{3x}}{{9 + {x^2}}} + {\cot ^{ - 1}}\left( {\frac{x}{3}} \right)$$

Work Step by Step

$$\eqalign{ & f\left( x \right) = x{\cot ^{ - 1}}\left( {x/3} \right) \cr & {\text{find the derivative}} \cr & f'\left( x \right) = \frac{d}{{dx}}\left[ {x{{\cot }^{ - 1}}\left( {x/3} \right)} \right] \cr & {\text{use product rule}} \cr & f'\left( x \right) = x\frac{d}{{dx}}\left[ {{{\cot }^{ - 1}}\left( {\frac{x}{3}} \right)} \right] + {\cot ^{ - 1}}\left( {\frac{x}{3}} \right)\frac{d}{{dx}}\left[ x \right] \cr & {\text{use }}\frac{d}{{dx}}\left[ {{{\cot }^{ - 1}}u} \right] = - \frac{1}{{1 + {u^2}}}\frac{{du}}{{dx}}.{\text{ let }}u = \frac{x}{3} \cr & f'\left( x \right) = x\left( { - \frac{1}{{1 + {{\left( {x/3} \right)}^2}}}} \right)\frac{d}{{dx}}\left[ {\frac{x}{3}} \right] + {\cot ^{ - 1}}\left( {\frac{x}{3}} \right)\left( 1 \right) \cr & f'\left( x \right) = - \frac{x}{{1 + {{\left( {x/3} \right)}^2}}}\left( {\frac{1}{3}} \right) + {\cot ^{ - 1}}\left( {\frac{x}{3}} \right) \cr & {\text{simplifying}} \cr & f'\left( x \right) = - \frac{x}{{1 + {x^2}/9}}\left( {\frac{1}{3}} \right) + {\cot ^{ - 1}}\left( {\frac{x}{3}} \right) \cr & f'\left( x \right) = - \frac{{9x}}{{9 + {x^2}}}\left( {\frac{1}{3}} \right) + {\cot ^{ - 1}}\left( {\frac{x}{3}} \right) \cr & f'\left( x \right) = - \frac{{3x}}{{9 + {x^2}}} + {\cot ^{ - 1}}\left( {\frac{x}{3}} \right) \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.