Calculus: Early Transcendentals (2nd Edition)

Published by Pearson
ISBN 10: 0321947347
ISBN 13: 978-0-32194-734-5

Chapter 3 - Derivatives - 3.10 Derivatives of Inverse Trigonometric Functions - 3.10 Execises - Page 221: 5

Answer

$$\left( {{f^{ - 1}}} \right)'\left( 8 \right) = \frac{1}{4}$$

Work Step by Step

$$\eqalign{ & {\text{We know that }}f\left( 2 \right) = 8{\text{ and }}f'\left( 2 \right) = 4.{\text{ Calculate }}\left( {{f^{ - 1}}} \right)'\left( 8 \right) \cr & {\text{From the theorem 3}}{\text{.23 }}\left( {{\text{Derivative of the Inverse Function}}} \right) \cr & \left( {{f^{ - 1}}} \right)'\left( {{y_0}} \right) = \frac{1}{{f'\left( {{x_0}} \right)}},{\text{ where }}{y_0} = f\left( {{x_0}} \right) \cr & {\text{Comparing:}}\left( {{f^{ - 1}}} \right)'\left( {{y_0}} \right) = \left( {{f^{ - 1}}} \right)'\left( 8 \right) \Rightarrow {y_0} = 8{\text{ and }}{x_0} = \left( {{f^{ - 1}}} \right)\left( {{y_0}} \right) \cr & {\text{We have that: }}f\left( 2 \right) = 8{\text{ and }}f'\left( 2 \right) = 4 \Rightarrow {x_0} = 2,{\text{ then}} \cr & {\text{Applying }}\left( {{f^{ - 1}}} \right)'\left( {{y_0}} \right) = \frac{1}{{f'\left( {{x_0}} \right)}} \cr & \left( {{f^{ - 1}}} \right)'\left( 8 \right) = \frac{1}{{f'\left( 2 \right)}} \cr & \left( {{f^{ - 1}}} \right)'\left( 8 \right) = \frac{1}{4} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.