Calculus: Early Transcendentals (2nd Edition)

Published by Pearson
ISBN 10: 0321947347
ISBN 13: 978-0-32194-734-5

Chapter 3 - Derivatives - 3.10 Derivatives of Inverse Trigonometric Functions - 3.10 Execises - Page 221: 22

Answer

$$f'\left( t \right) = \frac{1}{{{{\tan }^{ - 1}}t\left( {1 + {t^2}} \right)}}$$

Work Step by Step

$$\eqalign{ & f\left( t \right) = \ln \left( {{{\tan }^{ - 1}}t} \right) \cr & {\text{find the derivative}} \cr & f'\left( t \right) = \frac{d}{{dt}}\left[ {\ln \left( {{{\tan }^{ - 1}}t} \right)} \right] \cr & {\text{use }}\frac{d}{{dt}}\left[ {\ln u} \right] = \frac{1}{u}\frac{{du}}{{dt}}.{\text{ let }}u = {\tan ^{ - 1}}t \cr & f'\left( t \right) = \frac{1}{{{{\tan }^{ - 1}}t}}\frac{d}{{dt}}\left[ {{{\tan }^{ - 1}}t} \right] \cr & {\text{use }}\frac{d}{{dt}}\left[ {{{\tan }^{ - 1}}t} \right] = \frac{1}{{1 + {t^2}}} \cr & f'\left( t \right) = \frac{1}{{{{\tan }^{ - 1}}t}}\left( {\frac{1}{{1 + {t^2}}}} \right) \cr & {\text{simplifying}} \cr & f'\left( t \right) = \frac{1}{{{{\tan }^{ - 1}}t\left( {1 + {t^2}} \right)}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.