Calculus: Early Transcendentals (2nd Edition)

Published by Pearson
ISBN 10: 0321947347
ISBN 13: 978-0-32194-734-5

Chapter 3 - Derivatives - 3.10 Derivatives of Inverse Trigonometric Functions - 3.10 Execises - Page 221: 21

Answer

$$f'\left( u \right) = - \frac{1}{{\left| {2u + 1} \right|\sqrt {{u^2} + u} }}$$

Work Step by Step

$$\eqalign{ & f\left( u \right) = {\csc ^{ - 1}}\left( {2u + 1} \right) \cr & {\text{find the derivative}} \cr & f'\left( u \right) = \frac{d}{{du}}\left[ {{{\csc }^{ - 1}}\left( {2u + 1} \right)} \right] \cr & {\text{use }}\frac{d}{{du}}\left[ {{{\csc }^{ - 1}}z} \right] = - \frac{1}{{\left| z \right|\sqrt {{z^2} - 1} }}\frac{{dz}}{{du}}.{\text{ let }}z = 2u + 1 \cr & f'\left( u \right) = - \frac{1}{{\left| {2u + 1} \right|\sqrt {{{\left( {2u + 1} \right)}^2} - 1} }}\frac{d}{{du}}\left[ {2u + 1} \right] \cr & {\text{then}} \cr & f'\left( u \right) = - \frac{1}{{\left| {2u + 1} \right|\sqrt {{{\left( {2u + 1} \right)}^2} - 1} }}\left( 2 \right) \cr & {\text{simplifying}} \cr & f'\left( u \right) = - \frac{2}{{\left| {2u + 1} \right|\sqrt {{{\left( {2u + 1} \right)}^2} - 1} }} \cr & f'\left( u \right) = - \frac{2}{{\left| {2u + 1} \right|\sqrt {4{u^2} + 4u + 1 - 1} }} \cr & f'\left( u \right) = - \frac{2}{{\left| {2u + 1} \right|\sqrt {4{u^2} + 4u} }} \cr & f'\left( u \right) = - \frac{2}{{2\left| {2u + 1} \right|\sqrt {{u^2} + u} }} \cr & f'\left( u \right) = - \frac{1}{{\left| {2u + 1} \right|\sqrt {{u^2} + u} }} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.