Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 7 - Techniques of Integration - 7.8 Improper Integrals - 7.8 Exercises - Page 574: 9

Answer

Convergent $\;,\;$ $\large\frac{1}{5}e^{-10}$

Work Step by Step

Let \[I=\int_{2}^{\infty}e^{-5p}dp\;\;\;\ldots(1)\] \[I=\lim_{t\rightarrow \infty}\int_{2}^{t}e^{-5p}dp\;\;\;\ldots(2)\] \[I=\lim_{t\rightarrow \infty}\left[-\frac{1}{5}e^{-5p}\right]_{2}^{t}\] \[I=\lim_{t\rightarrow \infty}\left[-\frac{1}{5}e^{-5t}+\frac{1}{5}e^{-10}\right]\] \[I=\frac{1}{5}e^{-10}\] Since limit on R.H.S. of (2) exists So given improper integral (1) is convergent and \[I=\frac{1}{5}e^{-10}.\]
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.