Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 7 - Techniques of Integration - 7.8 Improper Integrals - 7.8 Exercises - Page 574: 13

Answer

Convergent $\;,\;$ 0

Work Step by Step

Let \[I=\int_{-\infty}^{\infty}xe^{-x^2}dx\] \[I=\int_{-\infty}^{0}xe^{-x^2}dx+\int_{0}^{\infty}xe^{-x^2}dx\;\;\ldots (1)\] Let \[I_1=\int_{-\infty}^{0}xe^{-x^2}dx\;\;\;\ldots(2)\] \[I_1=\lim_{t_1\rightarrow -\infty}\int_{t_1}^{0}xe^{-x^2}dx\;\;\;\ldots(3)\] Let \[I_2=\int xe^{-x^2}dx\] Substitute $-x^2=t$ ____(4) $\;\;\;\;\;\;\;\;\; -2xdx=dt$ Using (4) \[I_2=\frac{-1}{2}\int e^tdt=\frac{-1}{2}e^{-x^2}\;\;\;\ldots (5)\] Using (5) in (3) \[I_1=\lim_{t_1\rightarrow -\infty}\left[\frac{-1}{2}e^{-x^2}\right]_{t_1}^{0}\] \[I_1=\lim_{t_1\rightarrow -\infty}\left[\frac{-1}{2}+\frac{1}{2}e^{-t_{1}^2}\right]=\frac{-1}{2}\] Since limit on R.H.S. of (3) exists so $I_1$ is convergent $\Rightarrow I_1=\large\frac{-1}{2}$ Let \[I_3=\int_{0}^{\infty}xe^{-x^2}dx\] \[I_3=\lim_{t_2\rightarrow\infty}\int_{0}^{t_2}xe^{-x^2}dx \;\;\;\ldots (6)\] Using (5) in (6) \[I_3=\lim_{t_2\rightarrow\infty}\left[\frac{-1} {2}e^{-x^2}\right]_{0}^{t_2}\] \[I_3=\lim_{t_2\rightarrow\infty}\left[\frac{-1} {2}e^{-t_{2}^2}+\frac{1}{2}\right]=\frac{1}{2}\] Since limit on R.H.S. of (6) exists so $I_3$ is convergent \[I_3=\frac{1}{2}\] Since $I_1$ and $I_3$ are convergent So from (1) $I$ is convergent and $I=I_1+I_3=\large\frac{-1}{2}+\frac{1}{2}=0$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.