Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 7 - Techniques of Integration - 7.8 Improper Integrals - 7.8 Exercises - Page 574: 28

Answer

Convergent$\;\;,\;\;$ $\large\frac{3}{2}(5)^{\frac{2}{3}}$

Work Step by Step

Let \[I=\int_{0}^{5}\frac{1}{\sqrt[3]{5-x}}dx\] Since 5 is point of infinite discontinuity of integrand $\frac{1}{\sqrt[3]{5-x}}$ \[I= \int_{0}^{5}\frac{1}{\sqrt[3]{5-x}}dx= \lim_{t\rightarrow 5^-}\int_{0}^{t}\frac{1}{\sqrt[3]{5-x}}dx\] \[I=\lim_{t\rightarrow 5^-}\int_{0}^{t}\frac{1}{\sqrt[3]{5-x}}dx\;\;\;\ldots(1)\] \[I=\lim_{t\rightarrow 5^-}\int_{0}^{t}(5-x)^{\frac{-1}{3}}dx\] \[I=\lim_{t\rightarrow 5^-}\left[-\frac{3}{2}(5-x)^{\frac{2}{3}}\right]_{0}^{t}\] \[I=\lim_{t\rightarrow 5^-}\left[-\frac{3}{2}(5-t)^{\frac{2}{3}}+\frac{3}{2}(5)^{\frac{2}{3}}\right]\] \[I=\frac{3}{2}(5)^{\frac{2}{3}}\] Since limit on R.H.S. of (1) exists so $I$ is convergent and $I=\frac{3}{2}(5)^{\frac{2}{3}}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.