Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 7 - Techniques of Integration - 7.8 Improper Integrals - 7.8 Exercises - Page 574: 8

Answer

Convergent$\;,\;\large\frac{1}{18}$

Work Step by Step

Let \[I=\int_{1}^{\infty}\frac{1}{(2x+1)^3}dx\;\;\;\ldots(1)\] \[I=\lim_{t\rightarrow \infty}\int_{1}^{t}\frac{1}{(2x+1)^3}dx\;\;\;\ldots(2)\] \[I=\lim_{t\rightarrow \infty}\left[-\frac{1}{2}(2x+1)^{-2}\right]_{1}^{t}\] \[I=\lim_{t\rightarrow \infty}\left[-\frac{1}{2(2t+1)^2}+\frac{1}{2(3)^2}\right]\] \[I=\frac{1}{18}\] Since limit on R.H.S. of (2) exists So given improper integral (1) is convergent \[I=\frac{1}{18}.\]
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.