Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 7 - Techniques of Integration - 7.8 Improper Integrals - 7.8 Exercises - Page 574: 16

Answer

Divergent

Work Step by Step

Let \[I=\int_{0}^{\infty}\sin\theta\:e^{\cos \theta}d\theta\] \[I=\lim_{t\rightarrow \infty}\int_{0}^{t}\sin\theta\:e^{\cos \theta}d\theta\;\;\;\ldots (1)\] \[I=\lim_{t\rightarrow \infty}\left[-e^{\cos \theta}\right]_{0}^{t}\] \[I=\lim_{t\rightarrow \infty}\left[-e^{\cos t}+e^{\cos 0}\right]\] \[I=\lim_{t\rightarrow \infty}\left[-e^{\cos t}+e\right]\] $\;\;\;\;\;\;\;\;\;$ does not exist Since limit on R.H.S. of (1) does not exist So $I$ is divergent.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.