Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 7 - Techniques of Integration - 7.8 Improper Integrals - 7.8 Exercises - Page 574: 12

Answer

Divergent

Work Step by Step

Let \[I=\int_{-\infty}^{\infty}(y^3-3y^2)dy\;\;\;\ldots (1)\] \[I=\int_{-\infty}^{0}(y^3-3y^2)dy+\int_{0}^{\infty}(y^3-3y^2)dy\;\;\ldots (2)\] Let \[I_1=\int_{-\infty}^{0}(y^3-3y^2)dy\;\;\;\ldots(3)\] \[I_1=\lim_{t\rightarrow -\infty}\int_{t}^{0}(y^3-3y^2)dy\] \[I_1=\lim_{t\rightarrow -\infty}\left[\frac{y^4}{4}-y^3\right]_{t}^{0}\] \[I_1=\lim_{t\rightarrow -\infty}\left[0-\left(\frac{t^4}{4}-t^3\right)\right]\] $\;\;\;\;\;\;\;\;\;$ Does not exist Since limit on R.H.S. of (3) does not exist $\Rightarrow$ $I_1$ is divergent From (2) Consequently $I$ is divergent.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.