Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 7 - Techniques of Integration - 7.8 Improper Integrals - 7.8 Exercises - Page 574: 27

Answer

Divergent

Work Step by Step

Let \[I=\int_{0}^{1}\frac{1}{x}dx\] Since 0 is point of infinite discontinuity of integrand $\Large\frac{1}{x}$ \[I=\int_{0}^{1}\frac{1}{x}dx=\lim_{t\rightarrow 0^+}\int_{t}^{1}\frac{1}{x}dx\] \[I=\lim_{t\rightarrow 0^+}\int_{t}^{1}\frac{1}{x}dx\;\;\;\ldots(1)\] \[I=\lim_{t\rightarrow 0^+}\left[\ln x\right]_{t}^{1}\] \[I=\lim_{t\rightarrow 0^+}\left[0-\ln t\right]\] $\;\;\;\;\;\;\;\;\;\;\;\;\;\; \;\;\;\;$ does not exist Since limit on R.H.S. of (1) does not exist so $I$ is divergent.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.