Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 7 - Techniques of Integration - 7.8 Improper Integrals - 7.8 Exercises - Page 574: 24

Answer

Convergent $\;,\;$ 1

Work Step by Step

Let \[I=\int_{e}^{\infty}\frac{1}{x(\ln x)^2}dx\] \[I=\lim_{t\rightarrow \infty}\int_{e}^{t}\frac{1}{x(\ln x)^2}dx\;\;\;\ldots (1)\] Let \[I_1=\int\frac{1}{x(\ln x)^2}dx\] Substitute $\;r=\ln x\;\;\;\ldots (2)$ \[\Rightarrow dr=\frac{1}{x}dx\] \[I_1=\int\frac{dr}{r^2}=\frac{r^{-1}}{-1}\] Using (2) \[I_1=\frac{-1}{\ln x}\;\;\;\ldots (3)\] Using (3) in (1) \[I=\lim_{t\rightarrow \infty}\left[\frac{-1}{\ln x}\right]_{e}^{t}\] \[I=\lim_{t\rightarrow \infty}\left[\frac{-1}{\ln t}+\frac{1}{1}\right]\] \[I=1\] Since limit on R.H.S. of (1) exists so $I$ is convergent and $I=1$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.