Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 7 - Techniques of Integration - 7.8 Improper Integrals - 7.8 Exercises - Page 574: 25

Answer

Convergent $\;,\;$ 2

Work Step by Step

Let \[I=\int_{0}^{\infty}e^{-\sqrt{y}}dy\] \[I=\lim_{t\rightarrow \infty}\int_{0}^{t}e^{-\sqrt{y}}dy\;\;\;\ldots (1)\] Let \[I_1=\int e^{-\sqrt{y}}dy\] Substitute $\; r=-\sqrt{y}\;\;\;\ldots (2)$ \[\Rightarrow dr=-\frac{dy}{2\sqrt y}\] \[I_1=2\int re^{r}dr\] Using integration by parts \[I_1=2\left[r\int e^{r}dr-\int\left((r)'\int e^{r}dr\right)dr\right]\] \[I_1=2[re^{r}-\int e^{r}dr]\] \[I_1=2(r-1)e^{r}\] From (2) \[I_1=-2(\sqrt y+1)e^{-\sqrt y}\;\;\;\ldots (3)\] Using (3) in (1) \[I=\lim_{t\rightarrow \infty}\left[-2(\sqrt y+1)e^{-\sqrt y}\right]_{0}^{t}\] \[I=\lim_{t\rightarrow \infty}\left[-2(\sqrt t+1)e^{-\sqrt t}+2\right]\] \[I=2+\lim_{t\rightarrow \infty}\left[\frac{-2(\sqrt t+1)}{e^{\sqrt t}}\right] \;\;\;\;\left(\frac{\infty}{\infty}form\right)\] Using L' Hopital's rule \[I=2+\lim_{t\rightarrow \infty}\left[\frac{\frac{-2}{2\sqrt t}}{\frac{e^{\sqrt t}}{2\sqrt t}}\right]\] \[I=2+\lim_{t\rightarrow \infty}\left[\frac{-2}{e^\sqrt t}\right]=2\] Since limit on R.H.S. of (1) exists so $I$ is convergent and $I=2$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.