Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 7 - Techniques of Integration - 7.8 Improper Integrals - 7.8 Exercises - Page 574: 32

Answer

Convergent $\;,\;$ $\large\frac{π}{2}$

Work Step by Step

Let \[I=\int_{0}^{1}\frac{dx}{\sqrt{1-x^2}}\] Since 1 is point of infinite discontinuity of integrand $\large\frac{1}{\sqrt{1-x^2}}$ \[\Rightarrow I=\lim_{t\rightarrow 1^-}\int_{0}^{t}\frac{dx}{\sqrt{1-x^2}}\;\;\;\ldots (1)\] \[I=\lim_{t\rightarrow 1^-}\left[\sin^{-1}x\right]_{0}^{t}\] \[I=\lim_{t\rightarrow 1^-}\left[\sin^{-1}t\right]=\frac{π}{2}\] Since limit on R.H.S. of (1) exists so $I$ is convergent and $I=\frac{π}{2}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.