Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 7 - Techniques of Integration - 7.8 Improper Integrals - 7.8 Exercises - Page 574: 29

Answer

Convergent $\;,\;$ $\large\frac{32}{3}$

Work Step by Step

Let \[I=\int_{-2}^{14}\frac{dx}{\sqrt[4]{x+2}}\] Since $-2$ is point of infinite discontinuity of integrand $\frac{1}{\sqrt[4]{x+2}}$ \[\Rightarrow I=\lim_{t\rightarrow -2^+}\int_{t}^{14}\frac{dx}{\sqrt[4]{x+2}}\;\;\;\ldots (1)\] \[I=\lim_{t\rightarrow -2^+}\int_{t}^{14}(x+2)^{\frac{-1}{4}}dx\] \[I=\lim_{t\rightarrow -2^+}\left[\frac{4}{3}(x+2)^{\frac{3}{4}}\right]_{t}^{14}\] \[I=\lim_{t\rightarrow -2^+}\left[\frac{4}{3}(16)^{\frac{3}{4}}-\frac{4}{3}(t+2)^{\frac{3}{4}}\right]\] \[I=\frac{4}{3}\times 8=\frac{32}{3}\] Since limit on R.H.S. of (1) exists so $I$ is convergent and $I=\frac{32}{3}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.