Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 7 - Techniques of Integration - 7.8 Improper Integrals - 7.8 Exercises - Page 574: 23

Answer

Convergent $\;,\;$ $\Large\frac{-π}{8}$

Work Step by Step

Let \[I=\int_{-\infty}^{0}\frac{z}{z^4+4}dz\] \[I=\lim_{t\rightarrow -\infty}\int_{t}^{0}\frac{z}{z^4+4}dz\;\;\;\ldots (1)\] Let \[I_1=\int\frac{z}{z^4+4}dz\] Substitute $\; z^2=r\;\;\;\ldots (2)$ \[\Rightarrow 2zdz=dr\] \[I_1=\frac{1}{2}\int\frac{dr}{r^2+4}\] \[I_1=\frac{1}{2}\times\frac{1}{2}\tan^{-1}\frac{r}{2}\] From (2) \[I_1=\frac{1}{4}\tan^{-1}\frac{z^2}{2}\;\;\;\ldots (3)\] Using (3) in (1) \[I=\lim_{t\rightarrow -\infty}\left[\frac{1}{4}\tan^{-1}\frac{z^2}{2}\right]_{t}^{0}\] \[I=\lim_{t\rightarrow -\infty}\left[\frac{1}{4}(0)-\frac{1}{4}\tan^{-1}\frac{t^2}{2}\right]\] \[I=\frac{-1}{4}\times\frac{π}{2}\] \[I=\frac{-π}{8}\] Since limit on R.H.S. of (1) exists so $I$ is convergent and \[I=\frac{-π}{8}.\]
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.