Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 7 - Techniques of Integration - 7.8 Improper Integrals - 7.8 Exercises - Page 574: 21

Answer

Divergent

Work Step by Step

Let \[I=\int_{1}^{\infty}\frac{\ln x}{x}dx\] \[I=\lim_{t\rightarrow \infty}\int_{1}^{t}\frac{\ln x}{x}dx\;\;\;\ldots (1)\] \[I=\lim_{t\rightarrow \infty}\left[\frac{(\ln x)^2}{2}\right]_{1}^{t}\] \[I=\lim_{t\rightarrow \infty}\left[\frac{(\ln t)^2}{2}-0\right]\] $\;\;\;\;\;\;\;\;\;\;$does not exist Since limit on R.H.S. of (1) does not exist So $I$ is divergent.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.