Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 7 - Techniques of Integration - 7.8 Improper Integrals - 7.8 Exercises - Page 574: 10

Answer

Convergent $\;,\;$ $\large\frac{1}{\ln 2}$

Work Step by Step

Let \[I=\int_{-\infty}^{0}2^{r}dr\;\;\;\ldots(1)\] \[I=\lim_{t\rightarrow -\infty}\int_{t}^{0}2^{r}dr\;\;\;\ldots(2)\] \[I=\lim_{t\rightarrow -\infty}\left[\frac{2^r}{\ln 2}\right]_{t}^{0}\] \[I=\lim_{t\rightarrow -\infty}\left[\frac{1}{\ln 2}-\frac{2^t}{\ln 2}\right]\] \[I=\frac{1}{\ln 2}\] Since limit on R.H.S. of (2) exists So given improper integral (1) is convergent and \[I=\frac{1}{\ln 2}.\]
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.