Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 16 - Multiple Integration - Chapter Review Exercises - Page 908: 37

Answer

$\mathop \smallint \limits_{ - 2}^2 \mathop \smallint \limits_{ - \sqrt {4 - {x^2}} }^{\sqrt {4 - {x^2}} } \mathop \smallint \limits_0^{\sqrt {4 - {x^2} - {y^2}} } {{\rm{e}}^{ - {{\left( {{x^2} + {y^2} + {z^2}} \right)}^{3/2}}}}{\rm{d}}z{\rm{d}}y{\rm{d}}x$ $ = \mathop \smallint \limits_{\theta = 0}^{2\pi } \mathop \smallint \limits_{\phi = 0}^{\pi /2} \mathop \smallint \limits_{\rho = 0}^2 {{\rm{e}}^{ - {\rho ^3}}}{\rho ^2}\sin \phi {\rm{d}}\rho {\rm{d}}\phi {\rm{d}}\theta = 2.1$

Work Step by Step

From the triple integral $\mathop \smallint \limits_{ - 2}^2 \mathop \smallint \limits_{ - \sqrt {4 - {x^2}} }^{\sqrt {4 - {x^2}} } \mathop \smallint \limits_0^{\sqrt {4 - {x^2} - {y^2}} } {{\rm{e}}^{ - {{\left( {{x^2} + {y^2} + {z^2}} \right)}^{3/2}}}}{\rm{d}}z{\rm{d}}y{\rm{d}}x$, we obtain the domain of integration: $ - 2 \le x \le 2$, ${\ \ \ }$ $ - \sqrt {4 - {x^2}} \le y \le \sqrt {4 - {x^2}} $, ${\ \ \ }$ $0 \le z \le \sqrt {4 - {x^2} - {y^2}} $ Let ${\cal W}$ denote the region. We see that ${\cal W}$ is the upper hemisphere of radius $2$. Its projection onto the $xy$-plane is the disk ${x^2} + {y^2} \le 4$. Using $x = \rho \sin \phi \cos \theta $, $y = \rho \sin \phi \sin \theta $, in spherical coordinates, the description of ${\cal W}$: ${\cal W} = \left\{ {\left( {\rho ,\phi ,\theta } \right)|0 \le \rho \le 2,0 \le \phi \le \pi /2,0 \le \theta \le 2\pi } \right\}$ Evaluate $\mathop \smallint \limits_{ - 2}^2 \mathop \smallint \limits_{ - \sqrt {4 - {x^2}} }^{\sqrt {4 - {x^2}} } \mathop \smallint \limits_0^{\sqrt {4 - {x^2} - {y^2}} } {{\rm{e}}^{ - {{\left( {{x^2} + {y^2} + {z^2}} \right)}^{3/2}}}}{\rm{d}}z{\rm{d}}y{\rm{d}}x$ in spherical coordinates: $\mathop \smallint \limits_{\theta = 0}^{2\pi } \mathop \smallint \limits_{\phi = 0}^{\pi /2} \mathop \smallint \limits_{\rho = 0}^2 {{\rm{e}}^{ - {\rho ^3}}}{\rho ^2}\sin \phi {\rm{d}}\rho {\rm{d}}\phi {\rm{d}}\theta $ $ = - \frac{1}{3}\mathop \smallint \limits_{\theta = 0}^{2\pi } \mathop \smallint \limits_{\phi = 0}^{\pi /2} \left( {{{\rm{e}}^{ - {\rho ^3}}}|_0^2} \right)\sin \phi {\rm{d}}\phi {\rm{d}}\theta $ $ = - \frac{{{{\rm{e}}^{ - 8}} - 1}}{3}\mathop \smallint \limits_{\theta = 0}^{2\pi } \mathop \smallint \limits_{\phi = 0}^{\pi /2} \sin \phi {\rm{d}}\phi {\rm{d}}\theta $ $ = \frac{{{{\rm{e}}^{ - 8}} - 1}}{3}\mathop \smallint \limits_{\theta = 0}^{2\pi } \left( {\cos \phi |_0^{\pi /2}} \right){\rm{d}}\theta $ $ = \frac{{1 - {{\rm{e}}^{ - 8}}}}{3}\mathop \smallint \limits_{\theta = 0}^{2\pi } {\rm{d}}\theta = \frac{2}{3}\pi \left( {1 - {{\rm{e}}^{ - 8}}} \right) \simeq 2.1$ So, $\mathop \smallint \limits_{ - 2}^2 \mathop \smallint \limits_{ - \sqrt {4 - {x^2}} }^{\sqrt {4 - {x^2}} } \mathop \smallint \limits_0^{\sqrt {4 - {x^2} - {y^2}} } {{\rm{e}}^{ - {{\left( {{x^2} + {y^2} + {z^2}} \right)}^{3/2}}}}{\rm{d}}z{\rm{d}}y{\rm{d}}x$ $ = \mathop \smallint \limits_{\theta = 0}^{2\pi } \mathop \smallint \limits_{\phi = 0}^{\pi /2} \mathop \smallint \limits_{\rho = 0}^2 {{\rm{e}}^{ - {\rho ^3}}}{\rho ^2}\sin \phi {\rm{d}}\rho {\rm{d}}\phi {\rm{d}}\theta = 2.1$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.