Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 16 - Multiple Integration - Chapter Review Exercises - Page 908: 34

Answer

$\mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal D}^{} \sin \left( {{x^2} + {y^2}} \right){\rm{d}}A = \pi $

Work Step by Step

The region ${\cal D}$ is between the circles of radii $\sqrt {\frac{\pi }{2}} $ and $\sqrt \pi $, so it can be described in polar coordinates: ${\cal D} = \left\{ {\left( {r,\theta } \right)|\sqrt {\frac{\pi }{2}} \le r \le \sqrt \pi ,0 \le \theta \le 2\pi } \right\}$ Evaluate $\mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal D}^{} \sin \left( {{x^2} + {y^2}} \right){\rm{d}}A = \mathop \smallint \limits_{\theta = 0}^{2\pi } \mathop \smallint \limits_{r = \sqrt {\pi /2} }^{\sqrt \pi } \sin \left( {{r^2}} \right)r{\rm{d}}r{\rm{d}}\theta $ $ = - \frac{1}{2}\mathop \smallint \limits_{\theta = 0}^{2\pi } \left( {\cos \left( {{r^2}} \right)|_{\sqrt {\pi /2} }^{\sqrt \pi }} \right){\rm{d}}\theta $ $ = - \frac{1}{2}\mathop \smallint \limits_{\theta = 0}^{2\pi } \left( {\cos \left( \pi \right) - \cos \left( {\frac{\pi }{2}} \right)} \right){\rm{d}}\theta $ $ = \frac{1}{2}\mathop \smallint \limits_{\theta = 0}^{2\pi } {\rm{d}}\theta = \pi $ So, $\mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal D}^{} \sin \left( {{x^2} + {y^2}} \right){\rm{d}}A = \pi $.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.