Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 16 - Multiple Integration - Chapter Review Exercises - Page 908: 22

Answer

$\int_0^1 \int_{-\sqrt {1-y^2}}^{\sqrt {1-y^2}} \dfrac{y}{(1+x^2+y^2)^2} \ dx \ dy=\dfrac{\pi}{4}-\dfrac{1}{2}$

Work Step by Step

Here, we have: $\int_0^1 \int_{-\sqrt {1-y^2}}^{\sqrt {1-y^2}} \dfrac{y}{(1+x^2+y^2)^2} \ dx \ dy=\int_0^1 \int_{-\sqrt {1-y^2}}^{\sqrt {1-y^2}} \dfrac{y}{(1+x^2+y^2)^2} \ dy \ dx$ or, $=\int_{-1}^1 [-\dfrac{1}{2} \times (1+x^2+y^2)^{-1}]_0^{\sqrt {1-x^2}} \ dx $ or, $=\int_{-1}^1 [\dfrac{-1}{4}+\dfrac{1}{2(1+x^2)}] \ dx$ or, $=[\dfrac{-1}{4}x+\dfrac{1}{2} \tan^{-1} x]_{-1}^1$ or, $=\dfrac{-1}{4}x+\dfrac{1}{2}\times \dfrac{\pi}{4}-\dfrac{1}{4}+\dfrac{1}{2} \times \dfrac{\pi}{4}$ Thus, we get: $\int_0^1 \int_{-\sqrt {1-y^2}}^{\sqrt {1-y^2}} \dfrac{y}{(1+x^2+y^2)^2} \ dx \ dy=\dfrac{\pi}{4}-\dfrac{1}{2}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.