Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 16 - Multiple Integration - Chapter Review Exercises - Page 908: 29

Answer

$I = \mathop \smallint \limits_{x = - 1}^1 \mathop \smallint \limits_{y = 0}^{\sqrt {1 - {x^2}} } \mathop \smallint \limits_{z = 0}^1 \left( {x + y + z} \right){\rm{d}}z{\rm{d}}y{\rm{d}}x = \frac{2}{3} + \frac{\pi }{4}$

Work Step by Step

Evaluate: $I = \mathop \smallint \limits_{x = - 1}^1 \mathop \smallint \limits_{y = 0}^{\sqrt {1 - {x^2}} } \mathop \smallint \limits_{z = 0}^1 \left( {x + y + z} \right){\rm{d}}z{\rm{d}}y{\rm{d}}x$ $ = \mathop \smallint \limits_{x = - 1}^1 \mathop \smallint \limits_{y = 0}^{\sqrt {1 - {x^2}} } \left( {\left( {xz + yz + \frac{1}{2}{z^2}} \right)|_0^1} \right){\rm{d}}y{\rm{d}}x$ $ = \mathop \smallint \limits_{x = - 1}^1 \mathop \smallint \limits_{y = 0}^{\sqrt {1 - {x^2}} } \left( {x + y + \frac{1}{2}} \right){\rm{d}}y{\rm{d}}x$ $ = \mathop \smallint \limits_{x = - 1}^1 \left( {\left( {xy + \frac{1}{2}{y^2} + \frac{1}{2}y} \right)|_0^{\sqrt {1 - {x^2}} }} \right){\rm{d}}x$ $ = \mathop \smallint \limits_{x = - 1}^1 \left( {x\sqrt {1 - {x^2}} + \frac{1}{2} - \frac{1}{2}{x^2} + \frac{1}{2}\sqrt {1 - {x^2}} } \right){\rm{d}}x$ (1) ${\ \ \ }$ $I = \mathop \smallint \limits_{x = - 1}^1 x\sqrt {1 - {x^2}} {\rm{d}}x + \frac{1}{2}\mathop \smallint \limits_{x = - 1}^1 {\rm{d}}x - \frac{1}{2}\mathop \smallint \limits_{x = - 1}^1 {x^2}{\rm{d}}x + \frac{1}{2}\mathop \smallint \limits_{x = - 1}^1 \sqrt {1 - {x^2}} {\rm{d}}x$ 1. The antiderivative of $x\sqrt {1 - {x^2}} $ is $ - \frac{1}{3}{\left( {1 - {x^2}} \right)^{3/2}}$ because $\frac{d}{{dx}}\left( { - \frac{1}{3}{{\left( {1 - {x^2}} \right)}^{3/2}}} \right) = x\sqrt {1 - {x^2}} $ 2. The antiderivative of $\sqrt {1 - {x^2}} $ can be found by changing of variable: $x = \sin \theta $. So, $dx = \cos \theta d\theta $ and $\sqrt {1 - {x^2}} = \cos \theta $. Thus, $\mathop \smallint \limits_{x = - 1}^1 \sqrt {1 - {x^2}} {\rm{d}}x = \mathop \smallint \limits_{\theta = - \pi /2}^{\pi /2} {\cos ^2}{\rm{d}}\theta $ Using the double-angle formulas in Section 1.4: ${\cos ^2}\theta = \frac{1}{2}\left( {1 + \cos 2\theta } \right)$ we get $\mathop \smallint \limits_{x = - 1}^1 \sqrt {1 - {x^2}} {\rm{d}}x = \mathop \smallint \limits_{\theta = - \pi /2}^{\pi /2} {\cos ^2}\theta {\rm{d}}\theta $ $ = \frac{1}{2}\mathop \smallint \limits_{\theta = - \pi /2}^{\pi /2} \left( {1 + \cos 2\theta } \right){\rm{d}}\theta $ $ = \frac{1}{2}\left( {\theta + \frac{1}{2}\sin 2\theta } \right)|_{ - \pi /2}^{\pi /2} = \frac{1}{2}\left( {\frac{\pi }{2} + \frac{\pi }{2}} \right) = \frac{\pi }{2}$ Substituting these results back in equation (1): $I = \mathop \smallint \limits_{x = - 1}^1 x\sqrt {1 - {x^2}} {\rm{d}}x + \frac{1}{2}\mathop \smallint \limits_{x = - 1}^1 {\rm{d}}x - \frac{1}{2}\mathop \smallint \limits_{x = - 1}^1 {x^2}{\rm{d}}x + \frac{1}{2}\mathop \smallint \limits_{x = - 1}^1 \sqrt {1 - {x^2}} {\rm{d}}x$ gives $I = - \frac{1}{3}\left( {{{\left( {1 - {x^2}} \right)}^{3/2}}|_{ - 1}^1} \right) + 1 - \frac{1}{2}\left( {\frac{1}{3}{x^3}|_{ - 1}^1} \right) + \frac{\pi }{4}$ $ = 1 - \frac{1}{2}\left( {\frac{2}{3}} \right) + \frac{\pi }{4} = \frac{2}{3} + \frac{\pi }{4}$ So, $I = \mathop \smallint \limits_{x = - 1}^1 \mathop \smallint \limits_{y = 0}^{\sqrt {1 - {x^2}} } \mathop \smallint \limits_{z = 0}^1 \left( {x + y + z} \right){\rm{d}}z{\rm{d}}y{\rm{d}}x = \frac{2}{3} + \frac{\pi }{4}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.