Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 16 - Multiple Integration - Chapter Review Exercises - Page 908: 24

Answer

$\mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal D}^{} x{\rm{d}}A = 5\pi $

Work Step by Step

We have in polar coordinates: $r = 2\left( {1 + \cos \theta } \right)$. From Figure 2, we see that $\theta $ varies from $0$ to $\pi $. So, the domain description of ${\cal D}$ in polar coordinates: ${\cal D} = \left\{ {\left( {r,\theta } \right)|0 \le r \le 2\left( {1 + \cos \theta } \right),0 \le \theta \le \pi } \right\}$ Using $x = r\cos \theta $, we evaluate the integral in polar coordinates: $\mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal D}^{} x{\rm{d}}A = \mathop \smallint \limits_{\theta = 0}^\pi \mathop \smallint \limits_{r = 0}^{2\left( {1 + \cos \theta } \right)} {r^2}\cos \theta {\rm{d}}r{\rm{d}}\theta $ $ = \frac{1}{3}\mathop \smallint \limits_{\theta = 0}^\pi \left( {{r^3}|_0^{2\left( {1 + \cos \theta } \right)}} \right)\cos \theta {\rm{d}}\theta $ $ = \frac{8}{3}\mathop \smallint \limits_{\theta = 0}^\pi {\left( {1 + \cos \theta } \right)^3}\cos \theta {\rm{d}}\theta $ $ = \frac{8}{3}\mathop \smallint \limits_{\theta = 0}^\pi \left( {\cos \theta + 3{{\cos }^2}\theta + 3{{\cos }^3}\theta + {{\cos }^4}\theta } \right){\rm{d}}\theta $ Since ${\cos ^2}\theta = \frac{1}{2}\left( {1 + \cos 2\theta } \right)$, so $ = \frac{8}{3}\mathop \smallint \limits_{\theta = 0}^\pi \cos \theta {\rm{d}}\theta + 4\mathop \smallint \limits_{\theta = 0}^\pi \left( {1 + \cos 2\theta } \right){\rm{d}}\theta $ ${\ \ \ }$ $ + 8\mathop \smallint \limits_{\theta = 0}^\pi {\cos ^3}\theta {\rm{d}}\theta + \frac{8}{3}\mathop \smallint \limits_{\theta = 0}^\pi {\cos ^4}\theta {\rm{d}}\theta $ $ = \frac{8}{3}\left( {\sin \theta |_0^\pi } \right) + 4\left( {\theta + \frac{1}{2}\sin 2\theta } \right)|_0^\pi $ ${\ \ \ }$ $ + 8\mathop \smallint \limits_{\theta = 0}^\pi {\cos ^3}\theta {\rm{d}}\theta + \frac{8}{3}\mathop \smallint \limits_{\theta = 0}^\pi {\cos ^4}\theta {\rm{d}}\theta $ $\mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal D}^{} x{\rm{d}}A = 4\pi + 8\mathop \smallint \limits_{\theta = 0}^\pi {\cos ^3}\theta {\rm{d}}\theta + \frac{8}{3}\mathop \smallint \limits_{\theta = 0}^\pi {\cos ^4}\theta {\rm{d}}\theta $ Using Eq. (6) of the Table of Trigonometric Integrals in Section 8.2: $\smallint {\cos ^n}x{\rm{d}}x = \frac{{{{\cos }^{n - 1}}x\sin x}}{n} + \frac{{n - 1}}{n}\smallint {\cos ^{n - 2}}x{\rm{d}}x$ we get $\mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal D}^{} x{\rm{d}}A = 4\pi + 8\left( {\frac{{{{\cos }^2}\theta \sin \theta }}{3}|_0^\pi + \frac{2}{3}\mathop \smallint \limits_{\theta = 0}^\pi \cos \theta {\rm{d}}\theta } \right)$ ${\ \ \ \ \ \ \ }$ $ + \frac{8}{3}\left( {\frac{{{{\cos }^3}\theta \sin \theta }}{4}|_0^\pi + \frac{3}{4}\mathop \smallint \limits_{\theta = 0}^\pi {{\cos }^2}\theta {\rm{d}}\theta } \right)$ Since $\mathop \smallint \limits_{\theta = 0}^\pi \cos \theta {\rm{d}}\theta = \sin \theta |_0^\pi = 0$ and $\mathop \smallint \limits_{\theta = 0}^\pi {\cos ^2}\theta {\rm{d}}\theta = \frac{1}{2}\mathop \smallint \limits_{\theta = 0}^\pi \left( {1 + \cos 2\theta } \right){\rm{d}}\theta = \frac{1}{2}\left( {\theta + \frac{1}{2}\sin 2\theta } \right)|_0^\pi = \frac{\pi }{2}$ so, $\mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal D}^{} x{\rm{d}}A = 4\pi + \frac{8}{3}\left( {\frac{3}{8}\pi } \right) = 5\pi $
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.