Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 16 - Multiple Integration - Chapter Review Exercises - Page 908: 17

Answer

- in the order $dxdy$ $\mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal D}^{} xy{\rm{d}}A = \mathop \smallint \limits_{y = 0}^1 \mathop \smallint \limits_{x = {y^2}}^y xy{\rm{d}}x{\rm{d}}y = \frac{1}{{24}}$ - in the order $dydx$ $\mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal D}^{} xy{\rm{d}}A = \mathop \smallint \limits_{x = 0}^1 \mathop \smallint \limits_{y = x}^{\sqrt x } xy{\rm{d}}y{\rm{d}}x = \frac{1}{{24}}$. The two results agree.

Work Step by Step

We have the domain ${\cal D}$ between $y=x$ and $y = \sqrt x $. From $y = \sqrt x $, we see that $x,y \ge 0$. So, ${\cal D}$ is in the first quadrant. We find the intersection of $y=x$ and $y = \sqrt x $: $y = x = \sqrt x $ Squaring both sides and after arranging gives ${x^2} - x = 0$ $x\left( {x - 1} \right) = 0$ So, the intersection is at $x=0$, $x=1$. 1. as an iterated integral in the order $dxdy$ In this order, ${\cal D}$ is described as a horizontally simple region: ${\cal D} = \left\{ {\left( {x,y} \right)|0 \le y \le 1,{y^2} \le x \le y} \right\}$ Evaluate: $\mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal D}^{} xy{\rm{d}}A = \mathop \smallint \limits_{y = 0}^1 \mathop \smallint \limits_{x = {y^2}}^y xy{\rm{d}}x{\rm{d}}y$ $ = \frac{1}{2}\mathop \smallint \limits_{y = 0}^1 \left( {{x^2}|_{{y^2}}^y} \right)y{\rm{d}}y$ $ = \frac{1}{2}\mathop \smallint \limits_{y = 0}^1 \left( {{y^3} - {y^5}} \right){\rm{d}}y$ $ = \frac{1}{2}\left( {\left( {\frac{1}{4}{y^4} - \frac{1}{6}{y^6}} \right)|_0^1} \right)$ $ = \frac{1}{2}\left( {\frac{1}{4} - \frac{1}{6}} \right) = \frac{1}{{24}}$ So, $\mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal D}^{} xy{\rm{d}}A = \mathop \smallint \limits_{y = 0}^1 \mathop \smallint \limits_{x = {y^2}}^y xy{\rm{d}}x{\rm{d}}y = \frac{1}{{24}}$. 2. as an iterated integral in the order $dydx$ In this order, ${\cal D}$ is described as a vertically simple region: ${\cal D} = \left\{ {\left( {x,y} \right)|0 \le x \le 1,x \le y \le \sqrt x } \right\}$ Evaluate: $\mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal D}^{} xy{\rm{d}}A = \mathop \smallint \limits_{x = 0}^1 \mathop \smallint \limits_{y = x}^{\sqrt x } xy{\rm{d}}y{\rm{d}}x$ $ = \frac{1}{2}\mathop \smallint \limits_{x = 0}^1 x\left( {{y^2}|_x^{\sqrt x }} \right){\rm{d}}x$ $ = \frac{1}{2}\mathop \smallint \limits_{x = 0}^1 \left( {{x^2} - {x^3}} \right){\rm{d}}x$ $ = \frac{1}{2}\left( {\left( {\frac{1}{3}{x^3} - \frac{1}{4}{x^4}} \right)|_0^1} \right)$ $ = \frac{1}{2}\left( {\frac{1}{3} - \frac{1}{4}} \right) = \frac{1}{{24}}$ So, $\mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal D}^{} xy{\rm{d}}A = \mathop \smallint \limits_{x = 0}^1 \mathop \smallint \limits_{y = x}^{\sqrt x } xy{\rm{d}}y{\rm{d}}x = \frac{1}{{24}}$. The two results agree.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.