Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 16 - Multiple Integration - Chapter Review Exercises - Page 908: 31

Answer

The volume of the solid is $\pi $.

Work Step by Step

Let ${\cal W}$ denote the cylinder ${x^2} + {y^2} = 1$ below the surface $z = {\left( {x + y} \right)^2}$ and above the surface $z = - {\left( {x - y} \right)^2}$. We can describe the solid region using cylindrical coordinates. Using $x = r\cos \theta $, $y = r\sin \theta $, we get ${\cal W} = \left\{ {\left( {r,\theta ,z} \right)|0 \le r \le 1,0 \le \theta \le 2\pi , - {r^2}{{\left( {\cos \theta - \sin \theta } \right)}^2} \le z \le {r^2}{{\left( {\cos \theta + \sin \theta } \right)}^2}} \right\}$ Compute the volume of ${\cal W}$: $V = \mathop \smallint \limits_{\theta = 0}^{2\pi } \mathop \smallint \limits_{r = 0}^1 \mathop \smallint \limits_{z = - {r^2}{{\left( {\cos \theta - \sin \theta } \right)}^2}}^{{r^2}{{\left( {\cos \theta + \sin \theta } \right)}^2}} r{\rm{d}}z{\rm{d}}r{\rm{d}}\theta $ (1) ${\ \ \ \ \ }$ $V = \mathop \smallint \limits_{\theta = 0}^{2\pi } \mathop \smallint \limits_{r = 0}^1 r\left( {z|_{ - {r^2}{{\left( {\cos \theta - \sin \theta } \right)}^2}}^{{r^2}{{\left( {\cos \theta + \sin \theta } \right)}^2}}} \right){\rm{d}}r{\rm{d}}\theta $ Evaluate $\left( {z|_{ - {r^2}{{\left( {\cos \theta - \sin \theta } \right)}^2}}^{{r^2}{{\left( {\cos \theta + \sin \theta } \right)}^2}}} \right)$: $\left( {z|_{ - {r^2}{{\left( {\cos \theta - \sin \theta } \right)}^2}}^{{r^2}{{\left( {\cos \theta + \sin \theta } \right)}^2}}} \right) = {r^2}{\left( {\cos \theta + \sin \theta } \right)^2} + {r^2}{\left( {\cos \theta - \sin \theta } \right)^2}$ $ = {r^2}\left( {{{\cos }^2}\theta + 2\cos \theta \sin \theta + {{\sin }^2}\theta + {{\cos }^2}\theta - 2\cos \theta \sin \theta + {{\sin }^2}\theta } \right)$ $ = 2{r^2}$ So, $\left( {z|_{ - {r^2}{{\left( {\cos \theta - \sin \theta } \right)}^2}}^{{r^2}{{\left( {\cos \theta + \sin \theta } \right)}^2}}} \right) = 2{r^2}$. Substituting the result $\left( {z|_{ - {r^2}{{\left( {\cos \theta - \sin \theta } \right)}^2}}^{{r^2}{{\left( {\cos \theta + \sin \theta } \right)}^2}}} \right) = 2{r^2}$ back in equation (1) gives $V = 2\mathop \smallint \limits_{\theta = 0}^{2\pi } \mathop \smallint \limits_{r = 0}^1 {r^3}{\rm{d}}r{\rm{d}}\theta $ $ = \frac{1}{2}\mathop \smallint \limits_{\theta = 0}^{2\pi } \left( {{r^4}|_0^1} \right){\rm{d}}\theta $ $ = \frac{1}{2}\mathop \smallint \limits_{\theta = 0}^{2\pi } {\rm{d}}\theta = \pi $ So, the volume of the solid is $\pi $.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.