Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 16 - Multiple Integration - Chapter Review Exercises - Page 908: 27

Answer

1. First way: in the order $dxdydz$ $\mathop \smallint \limits_{z = 1}^3 \mathop \smallint \limits_{y = 0}^1 \mathop \smallint \limits_{x = 0}^2 \left( {xy + z} \right){\rm{d}}x{\rm{d}}y{\rm{d}}z = 10$ 2. Second way: in the order $dydxdz$ $\mathop \smallint \limits_{z = 1}^3 \mathop \smallint \limits_{x = 0}^2 \mathop \smallint \limits_{y = 0}^1 \left( {xy + z} \right){\rm{d}}y{\rm{d}}x{\rm{d}}z = 10$ The two results agree.

Work Step by Step

1. First way: in the order $dxdydz$ $\mathop \smallint \limits_{z = 1}^3 \mathop \smallint \limits_{y = 0}^1 \mathop \smallint \limits_{x = 0}^2 \left( {xy + z} \right){\rm{d}}x{\rm{d}}y{\rm{d}}z$ $ = \mathop \smallint \limits_{z = 1}^3 \mathop \smallint \limits_{y = 0}^1 \left( {\left( {\frac{1}{2}{x^2}y + xz} \right)|_0^2} \right){\rm{d}}y{\rm{d}}z$ $ = \mathop \smallint \limits_{z = 1}^3 \mathop \smallint \limits_{y = 0}^1 \left( {2y + 2z} \right){\rm{d}}y{\rm{d}}z$ $ = \mathop \smallint \limits_{z = 1}^3 \left( {\left( {{y^2} + 2yz} \right)|_0^1} \right){\rm{d}}z$ $ = \mathop \smallint \limits_{z = 1}^3 \left( {1 + 2z} \right){\rm{d}}z$ $ = \left( {z + {z^2}} \right)|_1^3 = 3 + 9 - 1 - 1 = 10$ So, $\mathop \smallint \limits_{z = 1}^3 \mathop \smallint \limits_{y = 0}^1 \mathop \smallint \limits_{x = 0}^2 \left( {xy + z} \right){\rm{d}}x{\rm{d}}y{\rm{d}}z = 10$. 2. Second way: in the order $dydxdz$ $\mathop \smallint \limits_{z = 1}^3 \mathop \smallint \limits_{x = 0}^2 \mathop \smallint \limits_{y = 0}^1 \left( {xy + z} \right){\rm{d}}y{\rm{d}}x{\rm{d}}z$ $ = \mathop \smallint \limits_{z = 1}^3 \mathop \smallint \limits_{x = 0}^2 \left( {\left( {\frac{1}{2}x{y^2} + yz} \right)|_0^1} \right){\rm{d}}x{\rm{d}}z$ $ = \mathop \smallint \limits_{z = 1}^3 \mathop \smallint \limits_{x = 0}^2 \left( {\frac{1}{2}x + z} \right){\rm{d}}x{\rm{d}}z$ $ = \mathop \smallint \limits_{z = 1}^3 \left( {\left( {\frac{1}{4}{x^2} + xz} \right)|_0^2} \right){\rm{d}}z$ $ = \mathop \smallint \limits_{z = 1}^3 \left( {1 + 2z} \right){\rm{d}}z$ $ = \left( {z + {z^2}} \right)|_1^3 = 3 + 9 - 1 - 1 = 10$ So, $\mathop \smallint \limits_{z = 1}^3 \mathop \smallint \limits_{x = 0}^2 \mathop \smallint \limits_{y = 0}^1 \left( {xy + z} \right){\rm{d}}y{\rm{d}}x{\rm{d}}z = 10$. The two results agree.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.