Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 16 - Multiple Integration - Chapter Review Exercises - Page 908: 26

Answer

$\mathop \smallint \limits_{z = 0}^3 \mathop \smallint \limits_{y = 1}^4 \mathop \smallint \limits_{x = 2}^4 \left( {{x^3} + {y^2} + z} \right){\rm{d}}x{\rm{d}}y{\rm{d}}z = 693$

Work Step by Step

Evaluate $\mathop \smallint \limits_{z = 0}^3 \mathop \smallint \limits_{y = 1}^4 \mathop \smallint \limits_{x = 2}^4 \left( {{x^3} + {y^2} + z} \right){\rm{d}}x{\rm{d}}y{\rm{d}}z$ $ = \mathop \smallint \limits_{z = 0}^3 \mathop \smallint \limits_{y = 1}^4 \left( {\left( {\frac{1}{4}{x^4} + x{y^2} + xz} \right)|_2^4} \right){\rm{d}}y{\rm{d}}z$ $ = \mathop \smallint \limits_{z = 0}^3 \mathop \smallint \limits_{y = 1}^4 \left( {64 + 4{y^2} + 4z - 4 - 2{y^2} - 2z} \right){\rm{d}}y{\rm{d}}z$ $ = \mathop \smallint \limits_{z = 0}^3 \mathop \smallint \limits_{y = 1}^4 \left( {60 + 2{y^2} + 2z} \right){\rm{d}}y{\rm{d}}z$ $ = \mathop \smallint \limits_{z = 0}^3 \left( {\left( {60y + \frac{2}{3}{y^3} + 2yz} \right)|_1^4} \right){\rm{d}}z$ $ = \mathop \smallint \limits_{z = 0}^3 \left( {240 + \frac{{128}}{3} + 8z - 60 - \frac{2}{3} - 2z} \right){\rm{d}}z$ $ = \mathop \smallint \limits_{z = 0}^3 \left( {222 + 6z} \right){\rm{d}}z$ $ = \left( {222z + 3{z^2}} \right)|_0^3 = 666 + 27 = 693$ So, $\mathop \smallint \limits_{z = 0}^3 \mathop \smallint \limits_{y = 1}^4 \mathop \smallint \limits_{x = 2}^4 \left( {{x^3} + {y^2} + z} \right){\rm{d}}x{\rm{d}}y{\rm{d}}z = 693$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.