Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 16 - Multiple Integration - Chapter Review Exercises - Page 908: 18

Answer

$\mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal D}^{} {x^3}y{\rm{d}}A = \frac{1}{{5376}}$

Work Step by Step

Let ${\cal D}$ denote the region between the curves $y = {x^2}$ and $y = x\left( {1 - x} \right)$. We need to find the boundaries of ${\cal D}$, so we solve for the intersection of the curves: ${x^2} = x\left( {1 - x} \right)$, ${\ \ \ \ \ }$ ${x^2} = x - {x^2}$ $2{x^2} - x = 0$ $x\left( {2x - 1} \right) = 0$ So, the boundaries of ${\cal D}$ is at $x=0$ and $x = \frac{1}{2}$. We describe ${\cal D}$ as a vertically simple region defined by ${\cal D} = \left\{ {\left( {x,y} \right)|0 \le x \le \frac{1}{2},{x^2} \le y \le x\left( {1 - x} \right)} \right\}$ Evaluate the double integral of $f\left( {x,y} \right) = {x^3}y$ over ${\cal D}$: $\mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal D}^{} {x^3}y{\rm{d}}A = \mathop \smallint \limits_{x = 0}^{1/2} \mathop \smallint \limits_{y = {x^2}}^{x\left( {1 - x} \right)} {x^3}y{\rm{d}}y{\rm{d}}x$ $ = \frac{1}{2}\mathop \smallint \limits_{x = 0}^{1/2} {x^3}\left( {{y^2}|_{{x^2}}^{x\left( {1 - x} \right)}} \right){\rm{d}}x$ $ = \frac{1}{2}\mathop \smallint \limits_{x = 0}^{1/2} {x^3}\left( {{x^2}\left( {1 - 2x + {x^2}} \right) - {x^4}} \right){\rm{d}}x$ $ = \frac{1}{2}\mathop \smallint \limits_{x = 0}^{1/2} \left( {{x^5} - 2{x^6}} \right){\rm{d}}x$ $ = \frac{1}{2}\left( {\frac{1}{6}{x^6} - \frac{2}{7}{x^7}} \right)|_0^{1/2}$ $ = \frac{1}{2}\left( {\frac{1}{6}\cdot\frac{1}{{64}} - \frac{2}{7}\cdot\frac{1}{{128}}} \right) = \frac{1}{{5376}}$ So, $\mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal D}^{} {x^3}y{\rm{d}}A = \frac{1}{{5376}}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.