Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 16 - Multiple Integration - Chapter Review Exercises - Page 908: 16

Answer

(a) $\mathop \smallint \limits_{}^{} \mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal W}^{} f\left( {x,y,z} \right){\rm{d}}V = \mathop \smallint \limits_{z = 0}^1 \mathop \smallint \limits_{x = 0}^4 \mathop \smallint \limits_{y = z}^{\left( {3 - z} \right)/2} f\left( {x,y,z} \right){\rm{d}}y{\rm{d}}x{\rm{d}}z$ (b) $\mathop \smallint \limits_{}^{} \mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal W}^{} {\rm{d}}V = 3$ (c) Using geometry, we show that the volume of ${\cal W}$ is 3. This coincides with the result in part (b).

Work Step by Step

(a) We have the region ${\cal W}:y = z,2y + z = 3,z = 0,0 \le x \le 4$. From the figure attached, we see that the projection of ${\cal W}$ onto the $xz$-plane, where $y=0$ is a rectangle. Using the equations $y=z$, $2y+z=3$ we obtain $z=1$. Since it is bounded by $z=0$ and $0 \le x \le 4$, the rectangle is $0 \le x \le 4$, $0 \le z \le 1$. Denote ${\cal S}$, the projections of ${\cal W}$ onto the $xz$-plane. So, ${\cal S} = \left\{ {\left( {x,z} \right)|0 \le x \le 4,0 \le z \le 1} \right\}$ We also see that ${\cal W}$ is a $y$-simple region bounded below by $y=z$ and bounded above by $y = \frac{1}{2}\left( {3 - z} \right)$. Thus, the description of ${\cal W}$: ${\cal W} = \left\{ {\left( {x,y,z} \right)|0 \le x \le 4,0 \le z \le 1,z \le y \le \frac{1}{2}\left( {3 - z} \right)} \right\}$ Expressing as an iterated integral in the order $dydxdz$, we get $\mathop \smallint \limits_{}^{} \mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal W}^{} f\left( {x,y,z} \right){\rm{d}}V = \mathop \smallint \limits_{z = 0}^1 \mathop \smallint \limits_{x = 0}^4 \mathop \smallint \limits_{y = z}^{\left( {3 - z} \right)/2} f\left( {x,y,z} \right){\rm{d}}y{\rm{d}}x{\rm{d}}z$ (b) We have $f\left( {x,y,z} \right) = 1$. So, the triple integral is the volume of ${\cal W}$: $\mathop \smallint \limits_{}^{} \mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal W}^{} {\rm{d}}V = \mathop \smallint \limits_{z = 0}^1 \mathop \smallint \limits_{x = 0}^4 \mathop \smallint \limits_{y = z}^{\left( {3 - z} \right)/2} {\rm{d}}y{\rm{d}}x{\rm{d}}z$ $ = \mathop \smallint \limits_{z = 0}^1 \mathop \smallint \limits_{x = 0}^4 \left( {y|_z^{\left( {3 - z} \right)/2}} \right){\rm{d}}x{\rm{d}}z$ $ = \mathop \smallint \limits_{z = 0}^1 \mathop \smallint \limits_{x = 0}^4 \left( {\frac{3}{2} - \frac{3}{2}z} \right){\rm{d}}x{\rm{d}}z$ $ = \frac{3}{2}\left( {\mathop \smallint \limits_{z = 0}^1 \left( {1 - z} \right){\rm{d}}z} \right)\left( {\mathop \smallint \limits_{x = 0}^4 {\rm{d}}x} \right)$ $ = \frac{3}{2}\left( {z - \frac{1}{2}{z^2}|_0^1} \right)\left( 4 \right)$ $ = 6\left( {1 - \frac{1}{2}} \right) = 3$ So, $\mathop \smallint \limits_{}^{} \mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal W}^{} {\rm{d}}V = 3$. The volume of ${\cal W}$ is 3. (c) From the figure attached, we see that the front face of ${\cal W}$ is a triangle with base $y = 1.5$ and height $z=1$. So, the area is $\frac{1}{2} \times 1.5 \times 1 = 0.75$. Since the length of ${\cal W}$ is $x=4$, the volume is $0.75 \times 4 = 3$. The result agrees with part (b).
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.