Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 16 - Multiple Integration - Chapter Review Exercises - Page 908: 28

Answer

$\mathop \smallint \limits_{}^{} \mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal W}^{} xyz{\rm{d}}V = \frac{7}{{72}}$

Work Step by Step

We have the region defined by ${\cal W} = \left\{ {0 \le x \le 1,x \le y \le 1,x \le z \le x + y} \right\}$. Evaluate: $\mathop \smallint \limits_{}^{} \mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal W}^{} xyz{\rm{d}}V = \mathop \smallint \limits_{x = 0}^1 \mathop \smallint \limits_{y = x}^1 \mathop \smallint \limits_{z = x}^{x + y} xyz{\rm{d}}z{\rm{d}}y{\rm{d}}x$ $ = \frac{1}{2}\mathop \smallint \limits_{x = 0}^1 \mathop \smallint \limits_{y = x}^1 xy\left( {{z^2}|_x^{x + y}} \right){\rm{d}}y{\rm{d}}x$ $ = \frac{1}{2}\mathop \smallint \limits_{x = 0}^1 \mathop \smallint \limits_{y = x}^1 xy\left( {2xy + {y^2}} \right){\rm{d}}y{\rm{d}}x$ $ = \frac{1}{2}\mathop \smallint \limits_{x = 0}^1 \mathop \smallint \limits_{y = x}^1 \left( {2{x^2}{y^2} + x{y^3}} \right){\rm{d}}y{\rm{d}}x$ $ = \frac{1}{2}\mathop \smallint \limits_{x = 0}^1 \left( {\left( {\frac{2}{3}{x^2}{y^3} + \frac{1}{4}x{y^4}} \right)|_x^1} \right){\rm{d}}x$ $ = \frac{1}{2}\mathop \smallint \limits_{x = 0}^1 \left( {\frac{2}{3}{x^2} + \frac{1}{4}x - \frac{2}{3}{x^5} - \frac{1}{4}{x^5}} \right){\rm{d}}x$ $ = \frac{1}{2}\mathop \smallint \limits_{x = 0}^1 \left( {\frac{2}{3}{x^2} + \frac{1}{4}x - \frac{{11}}{{12}}{x^5}} \right){\rm{d}}x$ $ = \frac{1}{2}\left( {\frac{2}{9}{x^3} + \frac{1}{8}{x^2} - \frac{{11}}{{72}}{x^6}} \right)|_0^1$ $ = \frac{1}{2}\left( {\frac{2}{9} + \frac{1}{8} - \frac{{11}}{{72}}} \right) = \frac{7}{{72}}$ So, $\mathop \smallint \limits_{}^{} \mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal W}^{} xyz{\rm{d}}V = \frac{7}{{72}}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.