Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 16 - Multiple Integration - Chapter Review Exercises - Page 908: 19

Answer

$\mathop \smallint \limits_{y = 0}^9 \mathop \smallint \limits_{x = 0}^{\sqrt y } \frac{x}{{{{\left( {{x^2} + y} \right)}^{1/2}}}}{\rm{d}}x{\rm{d}}y = \mathop \smallint \limits_{x = 0}^3 \mathop \smallint \limits_{y = {x^2}}^9 \frac{x}{{{{\left( {{x^2} + y} \right)}^{1/2}}}}{\rm{d}}y{\rm{d}}x \simeq 7.46$

Work Step by Step

From the integration $\mathop \smallint \limits_{y = 0}^9 \mathop \smallint \limits_{x = 0}^{\sqrt y } \frac{{x{\rm{d}}x{\rm{d}}y}}{{{{\left( {{x^2} + y} \right)}^{1/2}}}}$ we obtain the domain description: $0 \le x \le \sqrt y $, ${\ \ \ }$ $0 \le y \le 9$ Notice that this is a horizontally simple region. We change the region to vertically simple region such that the order of integration becomes $dydx$. Using $x = \sqrt y $ and $y=9$, we obtain the boundaries $y = {x^2}$ and $x=3$. This is illustrated in the figure attached. We see that the region is lower bounded by $y = {x^2}$ and upper bounded by $y=9$. Thus, the description of the domain as a vertically simple region is $0 \le x \le 3$, ${\ \ \ }$ ${x^2} \le y \le 9$ Evaluate the integral in the order of $dydx$: $\mathop \smallint \limits_{x = 0}^3 \mathop \smallint \limits_{y = {x^2}}^9 \frac{x}{{{{\left( {{x^2} + y} \right)}^{1/2}}}}{\rm{d}}y{\rm{d}}x = 2\mathop \smallint \limits_{x = 0}^3 x\left( {{{\left( {{x^2} + y} \right)}^{1/2}}|_{{x^2}}^9} \right){\rm{d}}x$ $ = 2\mathop \smallint \limits_{x = 0}^3 x\left( {{{\left( {{x^2} + 9} \right)}^{1/2}} - \sqrt 2 x} \right){\rm{d}}x$ $ = 2\left( {\frac{1}{3}{{\left( {{x^2} + 9} \right)}^{3/2}}|_0^3 - \frac{{\sqrt 2 }}{3}{x^3}|_0^3} \right)$ $ = 2\left( {\frac{1}{3}\left( {54\sqrt 2 - 27} \right) - 9\sqrt 2 } \right) = 18\left( {\sqrt 2 - 1} \right) \simeq 7.46$ So, $\mathop \smallint \limits_{y = 0}^9 \mathop \smallint \limits_{x = 0}^{\sqrt y } \frac{x}{{{{\left( {{x^2} + y} \right)}^{1/2}}}}{\rm{d}}x{\rm{d}}y = \mathop \smallint \limits_{x = 0}^3 \mathop \smallint \limits_{y = {x^2}}^9 \frac{x}{{{{\left( {{x^2} + y} \right)}^{1/2}}}}{\rm{d}}y{\rm{d}}x \simeq 7.46$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.