Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 16 - Multiple Integration - Chapter Review Exercises - Page 908: 20

Answer

We verify the following by evaluating directly: $\mathop \smallint \limits_{x = 2}^3 \mathop \smallint \limits_{y = 0}^2 \frac{{{\rm{d}}y{\rm{d}}x}}{{1 + x - y}} = \mathop \smallint \limits_{y = 0}^2 \mathop \smallint \limits_{x = 2}^3 \frac{{{\rm{d}}x{\rm{d}}y}}{{1 + x - y}}$

Work Step by Step

From the integral $\mathop \smallint \limits_{x = 2}^3 \mathop \smallint \limits_{y = 0}^2 \frac{{{\rm{d}}y{\rm{d}}x}}{{1 + x - y}}$, we see that the order of integration is $dydx$ and the domain of integration is a rectangle: $2 \le x \le 3$, $0 \le y \le 2$. Evaluate the integral in the order $dydx$: $\mathop \smallint \limits_{x = 2}^3 \mathop \smallint \limits_{y = 0}^2 \frac{{{\rm{d}}y{\rm{d}}x}}{{1 + x - y}} = - \mathop \smallint \limits_{x = 2}^3 \left( {\ln \left( {1 + x - y} \right)|_0^2} \right){\rm{d}}x$ (1) ${\ \ \ \ }$ $\mathop \smallint \limits_{x = 2}^3 \mathop \smallint \limits_{y = 0}^2 \frac{{{\rm{d}}y{\rm{d}}x}}{{1 + x - y}} = - \mathop \smallint \limits_{x = 2}^3 \left( {\ln \left( {x - 1} \right) - \ln \left( {x + 1} \right)} \right){\rm{d}}x$ The antiderivative of $\ln \left( {x + a} \right)$ is $\left( {x + a} \right)\ln \left( {x + a} \right) - x$, because $\frac{d}{{dx}}\left( {\left( {x + a} \right)\ln \left( {x + a} \right) - x} \right) = \frac{{x + a}}{{x + a}} + \ln \left( {x + a} \right) - 1 = \ln \left( {x + a} \right)$ Therefore, integral (1) becomes $\mathop \smallint \limits_{x = 2}^3 \mathop \smallint \limits_{y = 0}^2 \frac{{{\rm{d}}y{\rm{d}}x}}{{1 + x - y}} = - \left( {\left( {x - 1} \right)\ln \left( {x - 1} \right) - x - \left( {x + 1} \right)\ln \left( {x + 1} \right) + x} \right)|_2^3$ $ = - \left( {2\ln 2 - 4\ln 4 + 3\ln 3} \right) = 4\ln 4 - 3\ln 3 - 2\ln 2$ So, $\mathop \smallint \limits_{x = 2}^3 \mathop \smallint \limits_{y = 0}^2 \frac{{{\rm{d}}y{\rm{d}}x}}{{1 + x - y}} = 4\ln 4 - 3\ln 3 - 2\ln 2$. Using Fubini's Theorem (Theorem 3 in Section 16.1), we can change the order of integration to $dxdy$. Hence, $\mathop \smallint \limits_{x = 2}^3 \mathop \smallint \limits_{y = 0}^2 \frac{{{\rm{d}}y{\rm{d}}x}}{{1 + x - y}} = \mathop \smallint \limits_{y = 0}^2 \mathop \smallint \limits_{x = 2}^3 \frac{{{\rm{d}}x{\rm{d}}y}}{{1 + x - y}}$ Evaluate the integral in the order $dxdy$: $\mathop \smallint \limits_{y = 0}^2 \mathop \smallint \limits_{x = 2}^3 \frac{{{\rm{d}}x{\rm{d}}y}}{{1 + x - y}} = \mathop \smallint \limits_{y = 0}^2 \left( {\ln \left( {1 + x - y} \right)|_2^3} \right){\rm{d}}y$ (2) ${\ \ \ \ }$ $\mathop \smallint \limits_{y = 0}^2 \mathop \smallint \limits_{x = 2}^3 \frac{{{\rm{d}}x{\rm{d}}y}}{{1 + x - y}} = \mathop \smallint \limits_{y = 0}^2 \left( {\ln \left( {4 - y} \right) - \ln \left( {3 - y} \right)} \right){\rm{d}}y$ The antiderivative of $\ln \left( {b - y} \right)$ is $ - \left( {b - y} \right)\ln \left( {b - y} \right) - y$, because $\frac{d}{{dy}}\left( { - \left( {b - y} \right)\ln \left( {b - y} \right) - y} \right) = \frac{{b - y}}{{b - y}} + \ln \left( {b - y} \right) - 1 = \ln \left( {b - y} \right)$ Therefore, integral (2) becomes $\mathop \smallint \limits_{y = 0}^2 \mathop \smallint \limits_{x = 2}^3 \frac{{{\rm{d}}x{\rm{d}}y}}{{1 + x - y}} = \left( { - \left( {4 - y} \right)\ln \left( {4 - y} \right) - y + \left( {3 - y} \right)\ln \left( {3 - y} \right) + y} \right)|_0^2$ $ = - 2\ln 2 + 4\ln 4 - 3\ln 3$ So, $\mathop \smallint \limits_{y = 0}^2 \mathop \smallint \limits_{x = 2}^3 \frac{{{\rm{d}}x{\rm{d}}y}}{{1 + x - y}} = 4\ln 4 - 3\ln 3 - 2\ln 2$. Hence, $\mathop \smallint \limits_{x = 2}^3 \mathop \smallint \limits_{y = 0}^2 \frac{{{\rm{d}}y{\rm{d}}x}}{{1 + x - y}} = \mathop \smallint \limits_{y = 0}^2 \mathop \smallint \limits_{x = 2}^3 \frac{{{\rm{d}}x{\rm{d}}y}}{{1 + x - y}} = 4\ln 4 - 3\ln 3 - 2\ln 2$ Thus, we verified Fubini's Theorem (Theorem 3 in Section 16.1): $\mathop \smallint \limits_{x = 2}^3 \mathop \smallint \limits_{y = 0}^2 \frac{{{\rm{d}}y{\rm{d}}x}}{{1 + x - y}} = \mathop \smallint \limits_{y = 0}^2 \mathop \smallint \limits_{x = 2}^3 \frac{{{\rm{d}}x{\rm{d}}y}}{{1 + x - y}}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.