Answer
$$\int_{0}^{\pi / 3} \tan ^{2} x d x =\sqrt{3}-\pi /3$$
Work Step by Step
$$
\int_{0}^{\pi / 3} \tan ^{2} x d x
$$
Since $$1+\tan^2x=\sec^2x$$
Then
\begin{align*}
\int_{0}^{\pi / 3} \tan ^{2} x d x&=\int_{0}^{\pi / 3}(\sec^2x-1) d x\\
&=(\tan x -x)\bigg|_{0}^{\pi / 3}\\
&=(\tan (\pi/3) -(\pi/3))- (\tan (0) -(0))\\
&=\sqrt{3}-\pi /3
\end{align*}