Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 8 - Integration Techniques, L'Hopital's Rule, and Improper Integrals - 8.3 Exercises - Page 531: 62

Answer

$$\int_{\pi / 6}^{\pi / 3} \sin 6 x \cos 4 x d x =\frac{3}{10}$$

Work Step by Step

$$ \int_{\pi / 6}^{\pi / 3} \sin 6 x \cos 4 x d x $$ Since $$ \sin m x \cos n x=\frac{1}{2}(\sin [(m-n) x]+\sin [(m+n) x]) $$ Then \begin{align*} \int_{\pi / 6}^{\pi / 3} \sin 6 x \cos 4 x d x&=\frac{1}{2}\int_{\pi / 6}^{\pi / 3} (\sin 2 x +\sin 10 x )d x\\ &=\frac{1}{2} \left(\frac{-1}{2}\cos 2 x -\frac{1}{10}\cos 10 x \right)\bigg|_{\pi / 6}^{\pi / 3}\\ &=\frac{3}{10} \end{align*}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.