Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 8 - Integration Techniques, L'Hopital's Rule, and Improper Integrals - 8.3 Exercises - Page 531: 72

Answer

$$A = \frac{1}{2}$$

Work Step by Step

$$\eqalign{ & y = {\sin ^2}\pi x,{\text{ }}y = 0,{\text{ }}x = 0,{\text{ }}x = 1 \cr & {\text{The area of the region is given by }} \cr & A = \int_0^1 {{{\sin }^2}\pi x} dx \cr & A = \int_0^1 {\frac{{1 - \cos 2\pi x}}{2}} dx \cr & A = \int_0^1 {\left( {\frac{1}{2} - \frac{{\cos 2\pi x}}{{2\left( {2\pi } \right)}}\left( {2\pi } \right)} \right)} dx \cr & {\text{Integrating}} \cr & A = \left[ {\frac{1}{2}x - \frac{1}{{4\pi }}\sin \left( {2\pi x} \right)} \right]_0^1 \cr & A = \left[ {\frac{1}{2}\left( 1 \right) - \frac{1}{{4\pi }}\sin \left( {2\pi \left( 1 \right)} \right)} \right] - \left[ {\frac{1}{2}\left( 0 \right) - \frac{1}{{4\pi }}\sin \left( 0 \right)} \right] \cr & A = \left[ {\frac{1}{2}\left( 1 \right) - 0} \right] - \left[ 0 \right] \cr & A = \frac{1}{2} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.