Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 8 - Integration Techniques, L'Hopital's Rule, and Improper Integrals - 8.3 Exercises - Page 531: 64

Answer

$$\int_{-\pi / 2}^{\pi / 2}\left(\sin ^{2} x+1\right) d x =\frac{3\pi}{2}$$

Work Step by Step

$$ \int_{-\pi / 2}^{\pi / 2}\left(\sin ^{2} x+1\right) d x $$ Since \begin{align*} \int_{-\pi / 2}^{\pi / 2}\left(\sin ^{2} x+1\right) d x&=2\int_{0}^{\pi / 2}\left(\sin ^{2} x+1\right) d x\\ &=2\int_{0}^{\pi / 2}\left(\frac{3}{2} -\frac{1}{2}\cos 2 x\right) d x\\ &=2\left(\frac{3x}{2} -\frac{1}{4}\sin 2 x\right) \bigg|_{0}^{\pi / 2}\\ &=\frac{3\pi}{2} \end{align*}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.