Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 8 - Integration Techniques, L'Hopital's Rule, and Improper Integrals - 8.3 Exercises - Page 531: 83

Answer

$$\int \sin ^{5} x d x = \frac{-1}{5}\sin ^{4} x \cos x-\frac{4}{15} \sin ^{2} x \cos x-\frac{8}{15} \cos x +C$$

Work Step by Step

$$ \int \sin ^{5} x d x $$ Here $n=5$, using the formula $$ \int \sin ^{n} x d x=-\frac{\sin ^{n-1} x \cos x}{n}+\frac{n-1}{n} \int \sin ^{n-2} x d x $$ We get \begin{align*} \int \sin ^{5} x d x&=-\frac{\sin ^{4} x \cos x}{5}+\frac{4}{5} \int \sin ^{3} x d x\\ &=-\frac{\sin ^{4} x \cos x}{5}+\frac{4}{5}\left(-\frac{\sin ^{2} x \cos x}{3}+\frac{2}{3} \int \sin x d x\right)\\ &=-\frac{\sin ^{4} x \cos x}{5}+\frac{4}{5}\left(-\frac{\sin ^{2} x \cos x}{3}-\frac{2}{3} \cos x \right)+C\\ &= \frac{-1}{5}\sin ^{4} x \cos x-\frac{4}{15} \sin ^{2} x \cos x-\frac{8}{15} \cos x +C \end{align*}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.