Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 8 - Integration Techniques, L'Hopital's Rule, and Improper Integrals - 8.3 Exercises - Page 531: 61

Answer

$$\int_{0}^{\pi / 2} \frac{\cos t}{1+\sin t} d t =\ln 2$$

Work Step by Step

$$ \int_{0}^{\pi / 2} \frac{\cos t}{1+\sin t} d t $$ Let $u =1+\sin t \ \ \to \ \ du =\cos t dt $ and \begin{align*} \text{at} \ t&=0\ \ \ \ \ \to \ u=1\\ \text{at} \ t&=\pi/2\ \to \ u=2 \end{align*} Then \begin{align*} \int_{0}^{\pi / 2} \frac{\cos t}{1+\sin t} d t&=\int_{1}^{ 2} \frac{du}{u} \\ &=\ln u\bigg|_{1}^{2}\\ &=\ln 2 \end{align*}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.