Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 8 - Integration Techniques, L'Hopital's Rule, and Improper Integrals - 8.3 Exercises - Page 531: 79

Answer

$$\int \sin ^{n} x d x=-\frac{\sin ^{n-1} x \cos x}{n}+\frac{n-1}{n} \int \sin ^{n-2} x d x$$

Work Step by Step

Given $$\int \sin ^{n} x d x$$ Since $$\int \sin ^{n-1} x\sin x d x$$ Use integration by parts , let \begin{aligned} u&=\sin ^{n-1} x \ \ \ \ \ \ \ \ \ &dv&= \sin x d x\\ du&=(n-1)\sin ^{n-2} x\cos x \ \ \ \ \ \ \ \ \ & v&=- \cos x \end{aligned} Then \begin{aligned} \int \sin ^{n-1} x\sin x d x &= -\sin^{n-1}x\cos x +(n-1)\int \sin^{n-2}x\cos^2 xdx\\ &= -\sin^{n-1}x\cos x +(n-1)\int \sin^{n-2}x(1-\sin^2 x)dx\\ &= -\sin^{n-1}x\cos x +(n-1)\int \sin^{n-2}xdx+(n-1)\int \sin^n x)dx\\ n\int \sin ^{n-1} x\sin x d x&=-\sin^{n-1}x\cos x +(n-1)\int \sin^{n-2}xdx\\ \int \sin ^{n-1} x\sin x d x&=\frac{-\sin^{n-1}x\cos x}{n} +\frac{(n-1)}{n}\int \sin^{n-2}xdx \end{aligned}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.