Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 8 - Integration Techniques, L'Hopital's Rule, and Improper Integrals - 8.3 Exercises - Page 531: 63

Answer

$$ \int_{-\pi / 2}^{\pi / 2} 3 \cos ^{3} x d x=4 $$

Work Step by Step

$$ \int_{-\pi / 2}^{\pi / 2} 3 \cos ^{3} x d x $$ Since \begin{align*} \int_{-\pi / 2}^{\pi / 2} 3 \cos ^{3} x d x&=2\int_{0}^{\pi / 2} 3 \cos ^{3} x d x\\ &=6\int_{0}^{\pi / 2} \cos ^{2} x \cos x d x\\ &=6\int_{0}^{\pi / 2} (1-\sin^{2} x) \cos x d x\\ &=6 \left(\sin x-\frac{1}{3}\sin^{3} x\right)\bigg|_{0}^{\pi / 2}\\ &=6 \left(1-\frac{1}{3} \right)\\ &=4 \end{align*}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.