Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 8 - Integration Techniques, L'Hopital's Rule, and Improper Integrals - 8.3 Exercises - Page 531: 80

Answer

$$\int \cos ^{n} x d x=\frac{\cos ^{n-1} x \sin x}{n}+\frac{n-1}{n} \int \cos ^{n-2} x d x$$

Work Step by Step

Given $$\int \cos ^{n} x d x$$ Since $$\int \cos ^{n-1} x\cos x d x$$ Use integration by parts , let \begin{aligned} u&=\cos ^{n-1} x \ \ \ \ \ \ \ \ \ &dv&= \cos x d x\\ du&=-(n-1)\cos ^{n-2} x\sin x \ \ \ \ \ \ \ \ \ & v&=\sin x \end{aligned} Then \begin{aligned} \int \cos ^{n-1} x\cos x d x &= \cos^{n-1}x\sin x +(n-1)\int \cos^{n-2}x\sin^2 xdx\\ &= \cos^{n-1}x\sin x +(n-1)\int \cos^{n-2}x(1-\cos^2 x)dx\\ &= \cos^{n-1}x\sin x +(n-1)\int \cos^{n-2}xdx+ (n-1)\int\cos^n xdx\\ n\int \cos ^{n-1} x\cos x d x &=\cos^{n-1}x\sin x +(n-1)\int \cos^{n-2}xdx\\ \int \cos ^{n-1} x\cos x d x&= \frac{\cos ^{n-1} x \sin x}{n}+\frac{n-1}{n} \int \cos ^{n-2} x d x \end{aligned}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.