Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 8 - Integration Techniques, L'Hopital's Rule, and Improper Integrals - 8.3 Exercises - Page 531: 81

Answer

\begin{aligned} \int \cos ^{m} x \sin ^{n} x d x=&-\frac{\cos ^{m+1} x \sin ^{n-1} x}{m+n}+ \frac{n-1}{m+n} \int \cos ^{m} x \sin ^{n-2} x d x \end{aligned}

Work Step by Step

\begin{aligned} \int \cos ^{m} x \sin ^{n} x d x&= \int \cos ^{m} x \sin ^{n-1} x\sin x d x \end{aligned} Use integration by parts \begin{aligned} u&=\cos ^{m} x \sin ^{n-1} x \ \ \ \ \ \ \ \ &dv&= \sin x d x\\ du&=\left[(n-1) \sin ^{n-2} x \cos ^{m+1} x-m \sin ^{n} x \cos ^{m-1} x\right]dx\ \ \ \ \ \ \ \ &v&=- \cos x \end{aligned} Then \begin{aligned} \int \cos ^{m} x \sin ^{n} x d x&= \int \cos ^{m} x \sin ^{n-1} x\sin x d x\\ &= -\sin ^{n-1} x \cos ^{m+1} x+(n-1) \int \sin ^{n-2} x \cos ^{m+2} x d x-m \int \sin ^{n} x \cos ^{m} x d x, \ \ \ \text{Use} \ \cos^2x+\sin^2x=1\\ &= -\sin ^{n-1} x \cos ^{m+1} x+(n-1) \int \sin ^{n-2} x \cos ^{m} x d x-(n-1) \int \sin ^{n} x \cos ^{m} x d x-m \int \sin ^{n} x \cos ^{m} x d x\\ [1+(n-1)+m] \int \sin ^{n} x \cos ^{m} x d x&=-\sin ^{n-1} x \cos ^{m+1} x+(n-1) \int \sin ^{n-2} x \cos ^{m} x d x\\ [n+m] \int \sin ^{n} x \cos ^{m} x d x&=-\sin ^{n-1} x \cos ^{m+1} x+(n-1) \int \sin ^{n-2} x \cos ^{m} x d x\\ \int \sin ^{n} x \cos ^{m} x d x=-\frac{\sin ^{n-1} x \cos ^{m+1} x}{m+n}+\frac{n-1}{m+n} \int \sin ^{n-2} x \cos ^{m} x d x \end{aligned}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.