Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 8 - Integration Techniques, L'Hopital's Rule, and Improper Integrals - 8.3 Exercises - Page 531: 75

Answer

$$V = 2\pi \left( {1 - \frac{\pi }{4}} \right)$$

Work Step by Step

$$\eqalign{ & y = \tan x,{\text{ }}y = 0,{\text{ }}x = - \frac{\pi }{4},{\text{ }}x = \frac{\pi }{4} \cr & {\text{Using the disk method}} \cr & V = \int_0^{\pi /4} {\pi {{\left( {\tan x} \right)}^2}} dx \cr & {\text{By symmetry}} \cr & V = 2\int_0^{\pi /4} {\pi {{\left( {\tan x} \right)}^2}} dx \cr & V = 2\pi \int_0^{\pi /4} {{{\tan }^2}x} dx \cr & {\text{Pythagorean identity }}{\tan ^2}x = {\sec ^2}x - 1 \cr & V = 2\pi \int_0^{\pi /4} {\left( {{{\sec }^2}x - 1} \right)} dx \cr & {\text{Integrate}} \cr & V = 2\pi \left[ {\tan x - x} \right]_0^{\pi /4} \cr & V = 2\pi \left[ {\tan \left( {\frac{\pi }{4}} \right) - \left( {\frac{\pi }{4}} \right)} \right] - 2\pi \left[ {\tan \left( 0 \right) - \left( 0 \right)} \right] \cr & V = 2\pi \left( {1 - \frac{\pi }{4}} \right) \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.