Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 8 - Integration Techniques, L'Hopital's Rule, and Improper Integrals - 8.3 Exercises - Page 531: 71

Answer

$\frac{1}{3}$

Work Step by Step

The area between $y=sinx$ and $y=sin^{3}x$ from $x=0$ to $x=\frac{\pi}{2}$ is determined by doing greater minus lesser: $A=\int_{0}^{\frac{\pi}{2}}(sinx-sin^{3}x)dx$ $A=\int_{0}^{\frac{\pi}{2}}sinx(1-sin^{2}x)dx$ Through the Pythagorean identity $sin^{2}x+cos^{2}x=1$, $1-sin^{2}x=cos^{2}x$ $A=\int_{0}^{\frac{\pi}{2}}sinx(cos^{2}x)dx$ $let$ $u = cosx$ $du=-sinxdx$ $-du=sinxdx$ $u(0)=1$ $u(\frac{\pi}{2})=0$ $A=-\int_{1}^{0}u^{2}du$ $A=-[\frac{1}{3}u^{3}]_{1}^{0}$ $A=-({\frac{1}{3}}(0)^{3}-\frac{1}{3}(1)^{3})$ $A=-(0-\frac{1}{3})$ $A=\frac{1}{3}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.