Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 4 - Integration - 4.5 Exercises - Page 302: 78

Answer

$$f\left( x \right) = x{\left( {{x^2} + 1} \right)^2}{\text{ is an odd function}}$$

Work Step by Step

$$\eqalign{ & \int_{ - 2}^2 {x{{\left( {{x^2} + 1} \right)}^2}} dx = 0 \cr & {\text{Let }}f\left( x \right) = x{\left( {{x^2} + 1} \right)^2} \cr & {\text{Evaluate }}f\left( { - x} \right),{\text{ then}} \cr & f\left( { - x} \right) = - x{\left( {{{\left( { - x} \right)}^2} + 1} \right)^2} \cr & f\left( { - x} \right) = - x{\left( {{x^2} + 1} \right)^2} \cr & f\left( { - x} \right) = - \underbrace {x{{\left( {{x^2} + 1} \right)}^2}}_{f\left( x \right)} \cr & f\left( { - x} \right) = - f\left( x \right) \cr & {\text{Therefore }}f\left( x \right) = x{\left( {{x^2} + 1} \right)^2}{\text{ is an odd function}} \cr & {\text{Using the property }}\int_{ - a}^a {f\left( x \right)} dx = 0,{\text{ }} \cr & {\text{If }}f\left( x \right){\text{ is an odd function}}{\text{.}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.