Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 4 - Integration - 4.5 Exercises - Page 302: 47

Answer

$\frac{2}{5}(x+6)^{\frac{5}{2}} - 4(x+6)^{\frac{3}{2}} +C$

Work Step by Step

Find the indefinite integral. To use the steps from Example 5, let $u=x+6$, then $du=dx$, and $x=u-6$ $\int x\sqrt {x+6} dx$ Substitute for the terms under the radical, and for the x outside the radical $\int (u-6)u^{\frac{1}{2}}du$, Substitute $\int (u^{\frac{3}{2}} -6u^{\frac{1}{2}})du$ $\frac{2}{5}u^{\frac{5}{2}} - 4u^{\frac{3}{2}} +C$, Integrate $\frac{2}{5}(x+6)^{\frac{5}{2}} - 4(x+6)^{\frac{3}{2}} +C$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.