Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 4 - Integration - 4.5 Exercises - Page 302: 76

Answer

$$0$$

Work Step by Step

$$\eqalign{ & \int_{ - \pi /2}^{\pi /2} {\left( {\sin 4x + \cos 4x} \right)} dx \cr & {\text{Write the integral as a sum of integrals }} \cr & = \int_{ - \pi /2}^{\pi /2} {\sin 4x} dx + \int_{ - \pi /2}^{\pi /2} {\cos 4x} dx \cr & {\text{Where}} \cr & \sin 4x:{\text{ Odd function}} \cr & \cos 4x:{\text{Even function}} \cr & {\text{Using }}\left( {{\text{THEOREM 4}}.{\text{16}}} \right) \cr & = 0 + 2\int_0^{\pi /2} {\cos 4x} dx \cr & {\text{Integrating}} \cr & = 0 + 2\left[ {\frac{1}{4}\sin 4x} \right]_0^{\pi /2} \cr & = 0 + 2\left[ {\frac{1}{4}\sin 4\left( {\frac{\pi }{2}} \right) - 0} \right] \cr & = 0 \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.